Next-generation wireless networks are evolving towards architectures that integrate terrestrial and non-terrestrial networks (NTN), unitedly known as vertical heterogeneous networks (vHetNets). This integration is vital to address the increasing demand for coverage, capacity, and new services in urban environments. In vHetNets, various tiers can operate within the same frequency band, creating a harmonized spectrum-integrated network. Although this harmonization significantly enhances spectral efficiency, it also introduces challenges, with interference being a primary concern. This paper investigates vHetNets comprising high altitude platform stations (HAPS) and terrestrial macro base stations (MBSs) operating in a shared spectrum, where interference becomes a critical issue. The unique constraints of HAPS-enabled vHetNets further complicate the interference management problem. To address these challenges, we explore various strategies to manage interference in HAPS-enabled vHetNets. Accordingly, we discuss centralized and distributed approaches that leverage tools based on mathematical optimization and artificial intelligence (AI) to solve interference management problems. Preliminarily numerical evaluations reveal that distributed approaches not only achieve lower complexity but also deliver superior scalability compared to centralized methods, primarily due to their reduced dependence on global information.
翻译:暂无翻译