Compositional data arise in many real-life applications and versatile methods for properly analyzing this type of data in the regression context are needed. When parametric assumptions do not hold or are difficult to verify, non-parametric regression models can provide a convenient alternative method for prediction. To this end, we consider an extension to the classical $k$--$NN$ regression, termed $\alpha$--$k$--$NN$ regression, that yields a highly flexible non-parametric regression model for compositional data through the use of the $\alpha$-transformation. Our model is further extended to the $\alpha$--kernel regression by adopting the Nadaraya-Watson estimator. Unlike many of the recommended regression models for compositional data, zeros values (which commonly occur in practice) are not problematic and they can be incorporated into the proposed models without modification. Extensive simulation studies and real-life data analyses highlight the advantage of using these non-parametric regressions for complex relationships between the compositional response data and Euclidean predictor variables. Both suggest that $\alpha$--$k$--$NN$ and $\alpha$--kernel regressions can lead to more accurate predictions compared to current regression models which assume a, sometimes restrictive, parametric relationship with the predictor variables. In addition, the $\alpha$--$k$--$NN$ regression, in contrast to current regression techniques, enjoys a high computational efficiency rendering it highly attractive for use with large scale, massive, or big data.
翻译:许多实际生活中应用的构成数据和在回归背景下正确分析这类数据所需的多种方法都产生了构成数据。当参数假设不成立或难以核实时,非参数回归模型可以为预测提供一个方便的替代方法。为此,我们认为,将经典的美元-美元-NN美元回归法,称为美元-美元-美元-美元-新元回归法,加以扩展,从而产生一种非常灵活的非参数回归模型,通过使用美元-美元转换法,来正确分析这类数据。我们的模型进一步扩展至美元-内核回归法,采用纳达拉亚-瓦特森估算法,可以提供一种方便的替代方法。与许多建议的构成数据回归模型不同的是,零值(在实践中通常会发生)并不成问题,可以不作修改地纳入拟议的模型。 广泛的模拟研究和真实数据分析突出表明,在构成响应数据和欧洲大陆预测变量之间的复杂关系中,使用美元-美元-美元-美元-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内、内值-内值-内值-内值-内值-内值-内值-内值-内值-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内基-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内基-内基-内基-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-