The use of optimal transport cost for learning generative models has become popular with Wasserstein Generative Adversarial Networks (WGAN). Training of WGAN relies on a theoretical background: the calculation of the gradient of the optimal transport cost with respect to the generative model parameters. We first demonstrate that such gradient may not be defined, which can result in numerical instabilities during gradient-based optimization. We address this issue by stating a valid differentiation theorem in the case of entropic regularized transport and specify conditions under which existence is ensured. By exploiting the discrete nature of empirical data, we formulate the gradient in a semi-discrete setting and propose an algorithm for the optimization of the generative model parameters. Finally, we illustrate numerically the advantage of the proposed framework.
翻译:利用最佳运输成本学习基因模型,在瓦塞斯特因基因改变反转网络(WGAN)中已经很普遍。WGAN的培训依靠理论背景:计算与基因变现模型参数有关的最佳运输成本梯度。我们首先证明,这种梯度可能没有定义,从而在梯度优化过程中造成数字不稳定。我们通过说明在昆虫正规化运输情况下的有效区别标语和具体说明确保存在的条件来解决这一问题。我们利用经验数据的离散性质,在半分解设置中绘制梯度,并提出优化基因变现模型参数的算法。最后,我们用数字说明拟议框架的优势。