We propose quantum subroutines for the simplex method that avoid classical computation of the basis inverse. We show how to quantize all steps of the simplex algorithm, including checking optimality, unboundedness, and identifying a pivot (i.e., pricing the columns and performing the ratio test) according to Dantzig's rule or the steepest edge rule. The quantized subroutines obtain a polynomial speedup in the dimension of the problem, but have worse dependence on other numerical parameters. For example, for a problem with $m$ constraints, $n$ variables, at most $d_c$ nonzero elements per column of the costraint matrix, at most $d$ nonzero elements per column or row of the basis, basis condition number $\kappa$, and optimality tolerance $\epsilon$, pricing can be performed in $\tilde{O}(\frac{1}{\epsilon}\kappa d \sqrt{n}(d_c n + d m))$ time, where the $\tilde{O}$ notation hides polylogarithmic factors; classically, pricing requires $O(d_c^{0.7} m^{1.9} + m^{2 + o(1)} + d_c n)$ time in the worst case using the fastest known algorithm for sparse matrix multiplication. For well-conditioned sparse problems the quantum subroutines scale better in $m$ and $n$, and may therefore have an advantage for very large problems. The running time of the quantum subroutines can be improved if the constraint matrix admits an efficient algorithmic description, or if quantum RAM is available.
翻译:我们为简单x 方法提议量子路程, 避免经典地计算基数反向。 我们展示了如何量化简单x算法的所有步骤, 包括检查优化性、 无约束性, 以及根据 Dantzig 的规则或最陡的边缘规则, 确定一个轴值( 即, 计算列的定价和进行比率测试 ) 。 量化子路程在问题的维度上获得一个多元加速度, 但更依赖其它数字参数 。 例如, 问题涉及 $ 的限制, $ 的变量, $, $, 最多是 $_ c$ 非零 的元素, 并且根据 Dantzig 规则或最陡的边缘规则 。 量化的子路程可以在 $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ sqap\\\\\\\\\\\\\\ rorma\\\\\\\\\\\ ral_ ma\\\\\ room\ room room\ room room room room room rold rodeal_ rold room ro) ro) ro) rode, routd routy routd, routd, 在最差的 rma_ de, rmax, ral_ roma_ roma_ ma_ roma_ roma_ ro) romax_ max ro_ ro_ roma ro_ ro_ ro_ ro_ ma_ ma_ ma_ ma_ c c c c romax roma_ cremax roma_ ma_ ma_ ma_ ma_ ma_ ma_ ro_ ro_ ro_ ma_ ma_ ro_ ro_ ro_ ro_ ro_ ro_ ma_ ma_ ma_ ro_ ma_ ma_