Given a way to evaluate an unknown polynomial with integer coefficients, we present new algorithms to recover its nonzero coefficients and corresponding exponents. As an application, we adapt this interpolation algorithm to the problem of computing the exact quotient of two given polynomials. These methods are efficient in terms of the bit-length of the sparse representation, that is, the number of nonzero terms, the size of coefficients, the number of variables, and the logarithm of the degree. At the core of our results is a new Monte Carlo randomized algorithm to recover an integer polynomial $f(x)$ given a way to evaluate $f(\theta) \bmod m$ for any chosen integers $\theta$ and $m$. This algorithm has nearly-optimal bit complexity, meaning that the total bit-length of the probes, as well as the computational running time, is softly linear (ignoring logarithmic factors) in the bit-length of the resulting sparse polynomial. To our knowledge, this is the first sparse interpolation algorithm with soft-linear bit complexity in the total output size. For integer polynomials, the best previously known results have at least a cubic dependency on the bit-length of the exponents.
翻译:在评估未知的多元系数和整数系数的方法上, 我们提出新的算法, 以回收其非零系数和相应的指数。 作为应用程序, 我们调整这种内推算法, 以适应计算两种给定多元系数的精确商数的问题。 这些算法在稀少的表达方式的比特长度方面是有效的, 即非零条件的数量、 系数的大小、 变量的数量 和度的对数。 我们的结果的核心是一个新的 Monte Carlo 随机化算法, 以回收其非零系数和相应的指数。 作为一种应用程序, 我们将这种内推算算法用于评估任何选择的整数 $\\ tata$ 和 $ 美元 。 这种算法几乎是最佳的比特点复杂性, 也就是说, 探测器的总比特长度以及计算运行时间, 在由此导致的稀少的多元数值(x) 中, 是一种新的 Monte Carlo 随机算法 。 对于我们的知识来说, 这是已知的最小的最小的多数级内程。 。 这是已知的最小的最小的多数 。