In prior work, Gupta et al. (SPAA 2022) presented a distributed algorithm for multiplying sparse $n \times n$ matrices, using $n$ computers. They assumed that the input matrices are uniformly sparse -- there are at most $d$ non-zeros in each row and column -- and the task is to compute a uniformly sparse part of the product matrix. Initially each computer knows one row of each input matrix, and eventually each computer needs to know one row of the product matrix. In each communication round each computer can send and receive one $O(\log n)$-bit message. Their algorithm solves this task in $O(d^{1.907})$ rounds, while the trivial bound is $O(d^2)$. We improve on the prior work in two dimensions: First, we show that we can solve the same task faster, in only $O(d^{1.832})$ rounds. Second, we explore what happens when matrices are not uniformly sparse. We consider the following alternative notions of sparsity: row-sparse matrices (at most $d$ non-zeros per row), column-sparse matrices, matrices with bounded degeneracy (we can recursively delete a row or column with at most $d$ non-zeros), average-sparse matrices (at most $dn$ non-zeros in total), and general matrices. We show that we can still compute $X = AB$ in $O(d^{1.832})$ rounds even if one of the three matrices ($A$, $B$, or $X$) is average-sparse instead of uniformly sparse. We present algorithms that handle a much broader range of sparsity in $O(d^2 + \log n)$ rounds, and present conditional hardness results that put limits on further improvements and generalizations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员