Many real world person-person or person-product relationships can be modeled graphically. More specifically, bipartite graphs can be especially useful when modeling scenarios that involve two disjoint groups. As a result, many existing papers have utilized bipartite graphs for the classical link recommendation problem. In this paper, using the principle of bipartite graphs, we present another approach to this problem with a two step algorithm that takes into account frequency and similarity between common edges to make recommendations. We test this approach with bipartite data gathered from the Epinions and Movielens data sources, and find it to perform with roughly 14 percent error, which improves upon baseline results. This is a promising result, and can be refined to generate even more accurate recommendations.
翻译:许多真实世界的人与人或人-产品关系可以通过图形方式模拟。更具体地说,在模拟涉及两个脱节组的假设情景时,双部分图表可能特别有用。因此,许多现有论文使用双部分图表解决传统链接建议问题。在本文中,我们采用双部分图表原则,提出另一个方法来解决这一问题,用两步算法,考虑到共同边缘之间的频率和相似性来提出建议。我们用从Epinions和Mephelens数据源收集的双部分数据来测试这一方法,发现它以大约14%的错误来进行操作,从而在基线结果上有所改进。这是一个很有希望的结果,可以加以改进,以产生更准确的建议。