In the context of a finite mixture model whose components and weights are unknown, if the number of components is a function of the amount of data collected, we give the growth rate of its expected value. We also show that by placing a Dirichlet process prior on the densities supported on the unit simplex, we are able to retrieve the Dirac measure at the Choquet measure supported on the components. In turn, this gives us the weights. Finally, we propose a novel algorithm that identifies the model capturing the complexity of the data using only the strictly necessary number of components.
翻译:在一个不确定成分和重量的有限混合物模型的背景下,如果组件数量取决于所收集数据的数量,那么我们给出其预期值的增长率。我们还表明,通过在支持单位简单x的密度之前放置一个 Dirichlet 进程,我们就可以在支持组件的Choquet测量中检索Dirac测量值。反过来,这又给我们提供了加权值。最后,我们提出一种新的算法,用以确定模型,仅使用严格必要的组件数量来捕捉数据的复杂性。