Electricity is traded on various markets with different time horizons and regulations. Short-term trading becomes increasingly important due to higher penetration of renewables. In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the EPEX spot markets in a distinct hourly pattern. This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts. The model captures the emerging hourly pattern by considering the four 15 min intervals in each day-ahead price interval as a four-dimensional joint distribution. The resulting nontrivial, multivariate price difference distribution is learned using a normalizing flow, i.e., a deep generative model that combines conditional multivariate density estimation and probabilistic regression. The normalizing flow is compared to a selection of historical data, a Gaussian copula, and a Gaussian regression model. Among the different models, the normalizing flow identifies the trends most accurately and has the narrowest prediction intervals. Notably, the normalizing flow is the only approach that identifies rare price peaks. Finally, this work discusses the influence of different external impact factors and finds that, individually, most of these factors have negligible impact. Only the immediate history of the price difference realization and the combination of all input factors lead to notable improvements in the forecasts.
翻译:由于可再生能源渗透率的提高,短期交易变得日益重要。在德国,日内电价通常围绕EPEX现场市场的日头价格以不同的小时模式波动。这项工作提出了一种概率模型方法,用以模拟日内价格差异和日头合同。模型通过将每日价格间隔四十五分钟作为四维联合分配来捕捉新出现的每小时模式。由此产生的非三重、多变价格差异分配是使用正常流动来学习的,即一种将条件性多变密度估计和概率回归相结合的深基因模型。正常流动与选择历史数据、高斯奇奇奇拉和高斯回归模型相比较。在不同的模型中,正常流动将趋势确定最准确的趋势和最窄的预测间隔。值得注意的是,正常流动是确定稀有价格高峰的唯一方法。最后,这项工作讨论的是将有条件的多变异密度估计和概率回归结合起来的深层基因模型。 正常流动与选择历史数据、高斯海豹(Gausian coula) 和高斯回归模型相比较。在不同的模型中,正常流动将趋势确定最准确和最窄的预测间隔。典型的流动是确定最罕见的价格高峰的唯一方法。最后的价格峰峰值。最后的外部影响因素和最明显的预测因素。