Symmetry considerations are at the core of the major frameworks used to provide an effective mathematical representation of atomic configurations, that are then used in machine-learning models to predict the properties associated with each structure. In most cases, the models rely on a description of atom-centered environments, and are suitable to learn atomic properties, or global observables that can be decomposed into atomic contributions. Many quantities that are relevant for quantum mechanical calculations, however -- most notably the Hamiltonian matrix when written in an atomic-orbital basis -- are not associated with a single center, but with two (or more) atoms in the structure. We discuss a family of structural descriptors that generalize the very successful atom-centered density correlation features to the N-centers case, and show in particular how this construction can be applied to efficiently learn the matrix elements of the (effective) single-particle Hamiltonian written in an atom-centered orbital basis. These N-centers features are fully equivariant -- not only in terms of translations and rotations, but also in terms of permutations of the indices associated with the atoms -- and lay the foundations for symmetry-adapted machine-learning models of new classes of properties of molecules and materials.


翻译:对称考虑是主要框架的核心,主要框架用于为原子配置提供有效的数学代表,然后用于机器学习模型,以预测每个结构的属性。在多数情况下,模型依赖于原子中心环境的描述,适合学习原子特性,或可以分解成原子贡献的可观测到的原子特性。许多与量子机械计算有关的数量 -- -- 主要是以原子-轨道为基础写成的汉密尔顿矩阵 -- -- 并不与单一中心相关,而是与结构中的两个(或更多)原子相关。我们讨论结构描述器的组合,将非常成功的原子中心密度相关特征概括为N中心案例,并特别说明如何应用这一构造来有效学习原子-中心轨道基础写成的单粒汉密尔顿仪的矩阵要素。这些N中位特征完全不均匀 -- -- 不仅在翻译和旋转方面,而且在与原子-学习模型相关的指数的变异性方面 -- -- 以及为新模型的分子级和分子级的模型奠定基础。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2021年7月26日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员