The Ensemble Kalman inversion (EKI), proposed by Iglesias et al. for the solution of Bayesian inverse problems of type $y=A u^\dagger +\varepsilon$, with $u^\dagger$ being an unknown parameter and $y$ a given datum, is a powerful tool usually derived from a sequential Monte Carlo point of view. It describes the dynamics of an ensemble of particles $\{u^j(t)\}_{j=1}^J$, whose initial empirical measure is sampled from the prior, evolving over an artificial time $t$ towards an approximate solution of the inverse problem. Using spectral techniques, we provide a complete description of the deterministic dynamics of EKI and their asymptotic behavior in parameter space. In particular, we analyze the dynamics of deterministic EKI and mean-field EKI. We demonstrate that the Bayesian posterior can only be recovered with the mean-field limit and not with finite sample sizes or deterministic EKI. Furthermore, we show that -- even in the deterministic case -- residuals in parameter space do not decrease monotonously in the Euclidean norm and suggest a problem-adapted norm, where monotonicity can be proved. Finally, we derive a system of ordinary differential equations governing the spectrum and eigenvectors of the covariance matrix.


翻译:由Iglesias et al等提出,旨在解决Bayesian反问题(美元=A u ⁇ dagger ⁇ varepsilon$,美元是一个未知参数,美元是给定数据值,美元是一个未知的参数,美元是给定数据值)的复文(EKI),这是一个强有力的工具,通常来自相继的Monte Carlo观点。它描述了一个粒子集合的动态。它最初的经验性衡量标准是从先前的样本中抽取的,在人为时间里,美元逐渐演变为对反问题的一种近似解决办法。我们使用光谱技术,完整地描述了EKI的确定性动态及其在参数空间的无症状行为。特别是,我们分析了确定性 EKI和平均场EKI的动态。我们证明,Bayesian后方的后方的动态只能通过中位差异来恢复,而不是以有限的样本大小或确定性埃基为基。此外,我们表明,即使在确定性标准中,在常规的公式中,也能够证明,一等式的一等式标准。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员