The multiple scattering theory (MST) is one of the most widely used methods in electronic structure calculations. It features a perfect separation between the atomic configurations and site potentials, and hence provides an efficient way to simulate defected and disordered systems. This work studies the MST methods from a numerical point of view and shows the convergence with respect to the truncation of the angular momentum summations, which is a fundamental approximation parameter for all MST methods. We provide both rigorous analysis and numerical experiments to illustrate the efficiency of the MST methods within the angular momentum representations.
翻译:多种散射理论(MST)是电子结构计算中最广泛使用的方法之一,其特征是原子配置和场地潜力之间的完美分离,从而提供了模拟叛变和混乱系统的有效方法。这项工作从数字角度研究MST方法,并表明角动脉总和的脱轨方面趋同,这是所有MST方法的基本近似参数。我们提供了严格的分析和数字实验,以说明角动量表示中MST方法的效率。