For large classes of group testing problems, we derive lower bounds for the probability that all significant factors are uniquely identified using specially constructed random designs. These bounds allow us to optimize parameters of the randomization schemes. We also suggest and numerically justify a procedure of construction of designs with better separability properties than pure random designs. We illustrate theoretical consideration with large simulation-based study. This study indicates, in particular, that in the case of the common binary group testing, the suggested families of designs have better separability than the popular designs constructed from the disjunct matrices.


翻译:对于大类群体测试问题,我们从所有重要因素使用特殊随机设计被独特识别的概率中得出较低的界限,这些界限使我们能够优化随机化计划的参数;我们还提出并用数字说明建造设计过程的分离性强于纯随机设计。我们用大型模拟研究来说明理论考虑。特别是,在普通的二元组测试中,建议的设计组别比从分离矩阵中制造的流行设计更具有分离性。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2018年5月31日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2018年5月31日
Top
微信扫码咨询专知VIP会员