Proposed by Donoho (1997), Dyadic CART is a nonparametric regression method which computes a globally optimal dyadic decision tree and fits piecewise constant functions in two dimensions. In this article we define and study Dyadic CART and a closely related estimator, namely Optimal Regression Tree (ORT), in the context of estimating piecewise smooth functions in general dimensions in the fixed design setup. More precisely, these optimal decision tree estimators fit piecewise polynomials of any given degree. Like Dyadic CART in two dimensions, we reason that these estimators can also be computed in polynomial time in the sample size $N$ via dynamic programming. We prove oracle inequalities for the finite sample risk of Dyadic CART and ORT which imply tight risk bounds for several function classes of interest. Firstly, they imply that the finite sample risk of ORT of order $r \geq 0$ is always bounded by $C k \frac{\log N}{N}$ whenever the regression function is piecewise polynomial of degree $r$ on some reasonably regular axis aligned rectangular partition of the domain with at most $k$ rectangles. Beyond the univariate case, such guarantees are scarcely available in the literature for computationally efficient estimators. Secondly, our oracle inequalities uncover minimax rate optimality and adaptivity of the Dyadic CART estimator for function spaces with bounded variation. We consider two function spaces of recent interest where multivariate total variation denoising and univariate trend filtering are the state of the art methods. We show that Dyadic CART enjoys certain advantages over these estimators while still maintaining all their known guarantees.


翻译:Dyadic CART 是多诺霍(1997年)提出来的, Dyadic CARRT 是一种非参数回归法, 它计算出一个全球最佳的dyadic 决策树, 并且符合两个维度的固定函数。 在本条中, 我们定义和研究 Dyadic CART 和一个密切相关的估算符, 即最佳回归树( ORT ), 以估算固定设计设置中一般维度的细小平滑函数。 更准确地说, 这些最佳的树估计符适合任何特定程度的片断度多元度。 像 Dyadic CART 在两个维度上像 DART 一样, 我们有理由认为, 这些估测仪也可以在混合时间里计算, 样本里程上计算出 $ 美元 。 我们所知道的直线性 CARRT 和 ORT 的固定样本风险范围 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员