The NPMLE of a distribution function from doubly truncated data was introduced in the seminal paper of Efron and Petrosian. The consistency of the Efron-Petrosian estimator depends however on the assumption of independent truncation. In this work we introduce an extension of the Efron-Petrosian NPMLE when the variable of interest and the truncation variables may be dependent. The proposed estimator is constructed on the basis of a copula function which represents the dependence structure between the variable of interest and the truncation variables. Two different iterative algorithms to compute the estimator in practice are introduced, and their performance is explored through an intensive Monte Carlo simulation study. We illustrate the use of the estimators on two real data examples.
翻译:Efron-Petrosian 和 Petrosian 的开创性论文中引入了从双重缺线数据中分配功能的NPLE。但是,Efron-Petrosian 估计数字的一致性取决于独立缺线的假设。在这项工作中,我们引入了Efron-Petrosian NNPLE的扩展,因为利害变量和截线变量可能取决于这些变量。拟议的估计数字是根据一个合影函数构建的,该函数代表着利益变量和截线变量之间的依赖结构。引入了两种不同的迭代算法,在实际中计算估计数字,并通过一个密集的蒙特卡洛模拟研究探索其性能。我们用两个真实数据实例来说明估计数字的使用情况。