Recent advancements in virtual reality (VR) technology have enabled the creation of immersive learning environments that provide engineering students with hands-on, interactive experiences. This paper presents a novel framework for virtual laboratory environments (VLEs) focused on embodied learning, specifically designed to teach concepts related to mechanical and materials engineering. Utilizing the principles of embodiment and congruency, these VR modules offer students the opportunity to engage physically with virtual specimens and machinery, thereby enhancing their understanding of complex topics through sensory immersion and kinesthetic interaction. Our framework employs an event-driven, directed-graph-based architecture developed with Unity 3D and C#, ensuring modularity and scalability. Students interact with the VR environment by performing tasks such as selecting and testing materials, which trigger various visual and haptic events to simulate real-world laboratory conditions. A pre-/post-test evaluation method was used to assess the educational effectiveness of these VR modules. Results demonstrated significant improvements in student comprehension and retention, with notable increases in test scores compared to traditional non-embodied VR methods. The implementation of these VLEs in a university setting highlighted their potential to democratize access to high-cost laboratory experiences, making engineering education more accessible and effective. By fostering a deeper connection between cognitive processes and physical actions, our VR framework not only enhances learning outcomes but also provides a template for future developments in VR-based education. Our study suggests that immersive VR environments can significantly improve the learning experience for engineering students.
翻译:暂无翻译