Robots navigating dynamic, cluttered, and semantically complex environments must integrate perception, symbolic reasoning, and spatial planning to generalize across diverse layouts and object categories. Existing methods often rely on static priors or limited memory, constraining adaptability under partial observability and semantic ambiguity. We present GRIP, Grid-based Relay with Intermediate Planning, a unified, modular framework with three scalable variants: GRIP-L (Lightweight), optimized for symbolic navigation via semantic occupancy grids; GRIP-F (Full), supporting multi-hop anchor chaining and LLM-based introspection; and GRIP-R (Real-World), enabling physical robot deployment under perceptual uncertainty. GRIP integrates dynamic 2D grid construction, open-vocabulary object grounding, co-occurrence-aware symbolic planning, and hybrid policy execution using behavioral cloning, D* search, and grid-conditioned control. Empirical results on AI2-THOR and RoboTHOR benchmarks show that GRIP achieves up to 9.6% higher success rates and over $2\times$ improvement in path efficiency (SPL and SAE) on long-horizon tasks. Qualitative analyses reveal interpretable symbolic plans in ambiguous scenes. Real-world deployment on a Jetbot further validates GRIP's generalization under sensor noise and environmental variation. These results position GRIP as a robust, scalable, and explainable framework bridging simulation and real-world navigation.
翻译:暂无翻译