Many real-world optimization problems involve uncertain parameters with probability distributions that can be estimated using contextual feature information. In contrast to the standard approach of first estimating the distribution of uncertain parameters and then optimizing the objective based on the estimation, we propose an integrated conditional estimation-optimization (ICEO) framework that estimates the underlying conditional distribution of the random parameter while considering the structure of the optimization problem. We directly model the relationship between the conditional distribution of the random parameter and the contextual features, and then estimate the probabilistic model with an objective that aligns with the downstream optimization problem. We show that our ICEO approach is asymptotically consistent under moderate regularity conditions and further provide finite performance guarantees in the form of generalization bounds. Computationally, performing estimation with the ICEO approach is a non-convex and often non-differentiable optimization problem. We propose a general methodology for approximating the potentially non-differentiable mapping from estimated conditional distribution to the optimal decision by a differentiable function, which greatly improves the performance of gradient-based algorithms applied to the non-convex problem. We also provide a polynomial optimization solution approach in the semi-algebraic case. Numerical experiments are also conducted to show the empirical success of our approach in different situations including with limited data samples and model mismatches.
翻译:许多现实世界优化问题涉及不确定参数,其概率分布可以使用背景特征信息加以估计。与首先估计不确定参数的分布,然后根据估算优化目标的标准方法不同,我们提议了一个综合的有条件估算优化框架,在考虑优化问题结构的同时,对随机参数的基本有条件分布进行估算;我们直接模拟随机参数和背景特征的有条件分布与潜在非差异性分布之间的关系,然后估计概率模型,其目标与下游优化问题相一致。我们表明,我们的IPE 方法在中度常规条件下基本一致,并进一步以一般化界限的形式提供有限的绩效保障。我们比较,与ICEO进行估算是一种非共性且往往不差别的优化问题。我们提出了一种总体方法,以适应潜在非差异性分布的有条件分布与最佳决策相一致。我们还提出了一种总体方法,通过不同功能大大改进了适用于非共性优化问题的基于梯度的算算法的性能,并进一步以一般化界限为形式提供有限的绩效保障。我们进行的估算是一种非共性实验性实验方法,包括实验性实验性实验性模型中的不同模型。我们还提出了一种不同的模拟性模型式方法。