We consider the problem of extracting randomness from \textit{sumset sources}, a general class of weak sources introduced by Chattopadhyay and Li (STOC, 2016). An $(n,k,C)$-sumset source $\mathbf{X}$ is a distribution on $\{0,1\}^n$ of the form $\mathbf{X}_1 + \mathbf{X}_2 + \ldots + \mathbf{X}_C$, where $\mathbf{X}_i$'s are independent sources on $n$ bits with min-entropy at least $k$. Prior extractors either required the number of sources $C$ to be a large constant or the min-entropy $k$ to be at least $0.51 n$. As our main result, we construct an explicit extractor for sumset sources in the setting of $C=2$ for min-entropy $\mathrm{poly}(\log n)$ and polynomially small error. We can further improve the min-entropy requirement to $(\log n) \cdot (\log \log n)^{1 + o(1)}$ at the expense of worse error parameter of our extractor. We find applications of our sumset extractor for extracting randomness from other well-studied models of weak sources such as affine sources, small-space sources, and interleaved sources. Interestingly, it is unknown if a random function is an extractor for sumset sources. We use techniques from additive combinatorics to show that it is a disperser, and further prove that an affine extractor works for an interesting subclass of sumset sources which informally corresponds to the "low doubling" case (i.e., the support of $\mathbf{X_1} + \mathbf{X_2}$ is not much larger than $2^k$).


翻译:我们考虑从\ textit{ sumset 源} 提取随机性的问题。 { textit{ sumset 源 {x2+\ lockots +\ mathbf{X} +\ lock2+\ lockots +\ locktopts +\ mathbf{X ⁇ C$, 其中, $mathadhyay 和 Li( STOC, 2016年) 推出的薄弱来源的一般类别。 $( k, C) 美元 的元(n, k) 和 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 或美元, 美元, 美元, 美元, 美元。

0
下载
关闭预览

相关内容

STOC论文的典型但非排他性的主题包括基础领域,如算法和数据结构、计算复杂性、并行和分布式算法、量子计算、连续和离散优化、计算中的随机性、近似算法、组合数学和算法图论,密码学,计算几何,代数计算,逻辑计算应用,算法编码理论。典型的主题还包括计算和基础方面的领域,如机器学习,经济学,公平性,隐私,网络,数据管理和生物学。STOC鼓励那些拓宽计算理论研究范围,或提出可从理论调查和分析中受益的重要问题的论文。官网链接:http://acm-stoc.org/stoc2019/
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
(Python)3D人脸处理工具Face3d
AI研习社
7+阅读 · 2019年2月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月20日
Arxiv
0+阅读 · 2021年12月22日
Arxiv
0+阅读 · 2021年12月21日
Arxiv
0+阅读 · 2021年12月17日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
(Python)3D人脸处理工具Face3d
AI研习社
7+阅读 · 2019年2月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月20日
Top
微信扫码咨询专知VIP会员