Motivated by the statistical analysis of the discrete optimal transport problem, we prove distributional limits for the solutions of linear programs with random constraints. Such limits were first obtained by Klatt, Munk, & Zemel (2022), but their expressions for the limits involve a computationally intractable decomposition of $\mathbb{R}^m$ into a possibly exponential number of convex cones. We give a new expression for the limit in terms of auxiliary linear programs, which can be solved in polynomial time. We also leverage tools from random convex geometry to give distributional limits for the entire set of random optimal solutions, when the optimum is not unique. Finally, we describe a simple, data-driven method to construct asymptotically valid confidence sets in polynomial time.
翻译:基于对离散最佳运输问题的统计分析,我们证明对随机限制的线性程序解决方案的分布限制。这些限制最初由Klatt、Munk、Zemel和Zemel(2022年)获得,但这些限制的表达方式涉及在计算上难以做到的将$mathbb{R<unk> m$分解成一个可能成倍数的锥形锥形锥体。我们给辅助线性程序的限制用一个新的表达方式,在多元时间中可以解决。我们还利用随机锥形几何学工具来给整个随机最佳解决方案集设定分配限制,而最佳方案并非独一无二的。最后,我们描述了一种简单、数据驱动的方法,在多元时间中构建非抽象有效的信任套件。</s>