The standard game-theoretic solution concept, Nash equilibrium, assumes that all players behave rationally. If we follow a Nash equilibrium and opponents are irrational (or follow strategies from a different Nash equilibrium), then we may obtain an extremely low payoff. On the other hand, a maximin strategy assumes that all opposing agents are playing to minimize our payoff (even if it is not in their best interest), and ensures the maximal possible worst-case payoff, but results in exceedingly conservative play. We propose a new solution concept called safe equilibrium that models opponents as behaving rationally with a specified probability and behaving potentially arbitrarily with the remaining probability. We prove that a safe equilibrium exists in all strategic-form games (for all possible values of the rationality parameters), and prove that its computation is PPAD-hard. We present exact algorithms for computing a safe equilibrium in both 2 and $n$-player games, as well as scalable approximation algorithms.
翻译:标准游戏理论解决方案概念(纳什均衡 ) 假定所有玩家的行为都是理性的。 如果我们遵循纳什平衡,反对者是非理性的(或遵循不同纳什均衡的战略 ), 那么我们就可以获得极低的回报。 另一方面, 一项最大值战略假设所有对立的玩家都在玩游戏,以尽量减少我们的回报(即使不符合他们的最佳利益 ), 并确保最大可能的最坏的回报, 但却导致极为保守的游戏。 我们提出了一个新解决方案概念, 称为安全平衡, 模型的对手以特定概率理性地行事, 并可能任意地使用剩余概率。 我们证明所有战略形式游戏( 理性参数的所有可能值) 都存在安全平衡, 并证明其计算方法是硬的。 我们在2 和 $ 玩家游戏中提出了计算安全平衡的精确算法, 以及可缩略的近算法 。</s>