In response to rising concerns surrounding the safety, security, and trustworthiness of Generative AI (GenAI) models, practitioners and regulators alike have pointed to AI red-teaming as a key component of their strategies for identifying and mitigating these risks. However, despite AI red-teaming's central role in policy discussions and corporate messaging, significant questions remain about what precisely it means, what role it can play in regulation, and how precisely it relates to conventional red-teaming practices as originally conceived in the field of cybersecurity. In this work, we identify recent cases of red-teaming activities in the AI industry and conduct an extensive survey of the relevant research literature to characterize the scope, structure, and criteria for AI red-teaming practices. Our analysis reveals that prior methods and practices of AI red-teaming diverge along several axes, including the purpose of the activity (which is often vague), the artifact under evaluation, the setting in which the activity is conducted (e.g., actors, resources, and methods), and the resulting decisions it informs (e.g., reporting, disclosure, and mitigation). In light of our findings, we argue that while red-teaming may be a valuable big-tent idea for characterizing a broad set of activities and attitudes aimed at improving the behavior of GenAI models, gestures towards red-teaming as a panacea for every possible risk verge on security theater. To move toward a more robust toolbox of evaluations for generative AI, we synthesize our recommendations into a question bank meant to guide and scaffold future AI red-teaming practices.


翻译:暂无翻译

1
下载
关闭预览

相关内容

生成式人工智能是利用复杂的算法、模型和规则,从大规模数据集中学习,以创造新的原创内容的人工智能技术。这项技术能够创造文本、图片、声音、视频和代码等多种类型的内容,全面超越了传统软件的数据处理和分析能力。2022年末,OpenAI推出的ChatGPT标志着这一技术在文本生成领域取得了显著进展,2023年被称为生成式人工智能的突破之年。这项技术从单一的语言生成逐步向多模态、具身化快速发展。在图像生成方面,生成系统在解释提示和生成逼真输出方面取得了显著的进步。同时,视频和音频的生成技术也在迅速发展,这为虚拟现实和元宇宙的实现提供了新的途径。生成式人工智能技术在各行业、各领域都具有广泛的应用前景。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员