In this paper, we solve a multi-robot informative path planning (MIPP) task under the influence of uncertain communication and adversarial attackers. The goal is to create a multi-robot system that can learn and unify its knowledge of an unknown environment despite the presence of corrupted robots sharing malicious information. We use a Gaussian Process (GP) to model our unknown environment and define informativeness using the metric of mutual information. The objectives of our MIPP task is to maximize the amount of information collected by the team while maximizing the probability of resilience to attack. Unfortunately, these objectives are at odds especially when exploring large environments which necessitates disconnections between robots. As a result, we impose a probabilistic communication constraint that allows robots to meet intermittently and resiliently share information, and then act to maximize collected information during all other times. To solve our problem, we select meeting locations with the highest probability of resilience and use a sequential greedy algorithm to optimize paths for robots to explore. Finally, we show the validity of our results by comparing the learning ability of well-behaving robots applying resilient vs. non-resilient MIPP algorithms.
翻译:在本文中,我们在不确定的通信和对抗性攻击者的影响下,解决了多机器人信息化路径规划(MIPP)任务。目标是建立一个多机器人系统,能够学习和统一对未知环境的知识,尽管存在腐败的机器人分享恶意信息。我们使用高山进程来模拟我们未知的环境,并使用相互信息的标准来界定信息性。我们的MIP任务的目标是最大限度地增加团队收集的信息量,同时最大限度地提高攻击的抵抗力。不幸的是,这些目标在探索大型环境时尤其难以实现。结果,我们设置了一种概率性通信限制,允许机器人间歇和有弹性地共享信息,然后在所有其他时间采取行动,尽量扩大所收集的信息。为了解决我们的问题,我们选择具有最大弹性的会面地点,并使用顺序的贪婪算法来优化机器人的探索路径。最后,我们通过比较应用抗御力强的机器人的学习能力来显示我们的成果的有效性。