Theoretical properties of bilevel problems are well studied when the lower-level problem is strongly convex. In this work, we focus on bilevel optimization problems without the strong-convexity assumption. In these cases, we first show that the common local optimality measures such as KKT condition or regularization can lead to undesired consequences. Then, we aim to identify the mildest conditions that make bilevel problems tractable. We identify two classes of growth conditions on the lower-level objective that leads to continuity. Under these assumptions, we show that the local optimality of the bilevel problem can be defined via the Goldstein stationarity condition of the hyper-objective. We then propose the Inexact Gradient-Free Method (IGFM) to solve the bilevel problem, using an approximate zeroth order oracle that is of independent interest. Our non-asymptotic analysis demonstrates that the proposed method can find a $(\delta, \varepsilon)$ Goldstein stationary point for bilevel problems with a zeroth order oracle complexity that is polynomial in $d, 1/\delta$ and $1/\varepsilon$.
翻译:两层问题的理论性质在低层问题非常复杂时,会很好地研究双层问题的理论性质。 在这项工作中,我们注重双层优化问题,而没有强烈的默认假设。 在这些情况下,我们首先表明,共同的当地最佳性措施,如KKT条件或正规化,可能导致不理想的后果。然后,我们的目标是找出使双层问题易于处理的最温和的条件。我们在较低层次目标中确定了导致连续性的两类增长条件。根据这些假设,我们表明双层问题在当地的最佳性可以通过超层目标的戈德斯坦固定性条件来定义。然后,我们提议采用不精确的梯度自由方法(IGFM)解决双层问题,使用一种具有独立利益的近乎零级的顺序。我们的非被动分析表明,拟议的方法可以找到一个 $(delta), \ varepsilon) $(goldstein) 固定点, 双层问题具有以美元、 1/\\delta$和 1/\\vareslon(lon) 的零级复杂度。