Bilevel Optimization Programming is used to model complex and conflicting interactions between agents, for example in Robust AI or Privacy-preserving AI. Integrating bilevel mathematical programming within deep learning is thus an essential objective for the Machine Learning community. Previously proposed approaches only consider single-level programming. In this paper, we extend existing single-level optimization programming approaches and thus propose Differentiating through Bilevel Optimization Programming (BiGrad) for end-to-end learning of models that use Bilevel Programming as a layer. BiGrad has wide applicability and can be used in modern machine learning frameworks. BiGrad is applicable to both continuous and combinatorial Bilevel optimization problems. We describe a class of gradient estimators for the combinatorial case which reduces the requirements in terms of computation complexity; for the case of the continuous variable, the gradient computation takes advantage of the push-back approach (i.e. vector-jacobian product) for an efficient implementation. Experiments show that the BiGrad successfully extends existing single-level approaches to Bilevel Programming.


翻译:BiGrad具有广泛适用性,并可用于现代机器学习框架。BiGrad适用于连续和组合双级优化问题。我们描述了组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式模式的梯度估计器,这降低了计算复杂性的要求;就连续变量而言,梯度计算利用双级优化式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合组合组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合</s>

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
12+阅读 · 2021年3月24日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
11+阅读 · 2022年9月1日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
12+阅读 · 2021年3月24日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员