We introduce a novel gated recurrent unit (GRU) with a weighted time-delay feedback mechanism in order to improve the modeling of long-term dependencies in sequential data. This model is a discretized version of a continuous-time formulation of a recurrent unit, where the dynamics are governed by delay differential equations (DDEs). By considering a suitable time-discretization scheme, we propose $\tau$-GRU, a discrete-time gated recurrent unit with delay. We prove the existence and uniqueness of solutions for the continuous-time model, and we demonstrate that the proposed feedback mechanism can help improve the modeling of long-term dependencies. Our empirical results show that $\tau$-GRU can converge faster and generalize better than state-of-the-art recurrent units and gated recurrent architectures on a range of tasks, including time-series classification, human activity recognition, and speech recognition.
翻译:我们引入了一个新的封闭式经常性单位(GRU ), 配有加权时间间隔反馈机制, 以改善连续数据中长期依赖性模型的建模。 这个模型是一个连续时间制单元的单独版本, 其动态由延迟差异方程式( DDEs ) 调节。 通过考虑一个合适的时间分解计划, 我们提出美元- GRU, 即一个不固定时间封闭的经常性单位。 我们证明了持续时间模式解决方案的存在和独特性,并且我们证明拟议的反馈机制可以帮助改进长期依赖性模型的建模。 我们的经验结果表明, 美元- GRU可以比最先进的经常性单位和封闭式经常性结构在一系列任务(包括时间序列分类、人类活动识别和语音识别)上更快和更加宽泛化。