QuASK is a quantum machine learning software written in Python that supports researchers in designing, experimenting, and assessing different quantum and classical kernels performance. This software is package agnostic and can be integrated with all major quantum software packages (e.g. IBM Qiskit, Xanadu's Pennylane, Amazon Braket). QuASK guides the user through a simple preprocessing of input data, definition and calculation of quantum and classical kernels, either custom or pre-defined ones. From this evaluation the package provides an assessment about potential quantum advantage and prediction bounds on generalization error. Moreover, it allows for the generation of parametric quantum kernels that can be trained using gradient-descent-based optimization, grid search, or genetic algorithms. Projected quantum kernels, an effective solution to mitigate the curse of dimensionality induced by the exponential scaling dimension of large Hilbert spaces, are also calculated. QuASK can furthermore generate the observable values of a quantum model and use them to study the prediction capabilities of the quantum and classical kernels.
翻译:QuASK是用Python书写的量子机器学习软件,它支持研究人员设计、试验和评估不同量子和古典内核的性能。该软件是包件不可知性软件,可以与所有主要量子软件包(例如IBM Qiskit、Xanadu's Pennylane、Amazon Bramket)集成。QuASK通过简单的输入预处理数据、量子和古典内核的定义和计算,无论是定制的还是预定义的内核的定义和计算来指导用户。从这次评价中,该软件包提供了对可能量子优势的评估,以及一般化错误的预测界限。此外,它允许生成准量子内核,可以利用基于梯度的优化、网格搜索或基因算法来进行培训。预计量子内核是减轻由大型Hilbert空间的指数缩缩缩尺度引出的维度的诅咒的有效解决办法。QuASK还可以产生量子模型的可观测值,并利用它们研究量子和古典内核的预测能力。