In this paper we develop a framework for the construction and implementation of general virtual element spaces based on projections built from constraint least squares problems. We introduce the concept of a VEM tuple which encodes all the necessary building blocks to formulate the projections. Using this generic approach we present a wide range of virtual element spaces with additional properties. We showcase this approach with examples and build $H^k$-conforming spaces for $k=1,2$ as well as divergence and curl free spaces. The framework has the advantage of being easily integrated into any existing finite element package and we demonstrate this within the DUNE framework.
翻译:在本文中,我们根据从最平方的制约问题中得出的预测,为建造和实施一般虚拟元素空间制定了框架;我们引入了VEM tuple的概念,它编码了制定预测所需的所有基本构件;我们采用这一通用方法,提出了范围广泛的具有额外属性的虚拟元素空间;我们以实例展示了这一方法,并以1美元=1美元、2美元以及差异和曲线自由空间的形式构建了与美元相符的空间;这个框架的优点是很容易地融入任何现有的有限元素包中,我们在DUNE框架内展示了这一点。