Active inference provides a general framework for behavior and learning in autonomous agents. It states that an agent will attempt to minimize its variational free energy, defined in terms of beliefs over observations, internal states and policies. Traditionally, every aspect of a discrete active inference model must be specified by hand, i.e.\ by manually defining the hidden state space structure, as well as the required distributions such as likelihood and transition probabilities. Recently, efforts have been made to learn state space representations automatically from observations using deep neural networks. However, these models are typically overparameterized, with the risk of overfitting the data at hand. In this paper, we present a novel approach of learning state spaces using quantum physics-inspired tensor networks. The ability of tensor networks to represent the probabilistic nature of quantum states as well as to reduce large state spaces makes tensor networks a natural candidate for active inference. We show how tensor networks can be used as a generative model for sequential data. Furthermore, we show how one can obtain beliefs from such a generative model and how an active inference agent can use these to compute the expected free energy. Finally, we demonstrate our method on the classic T-maze environment.
翻译:主动推论为自主代理人的行为和学习提供了一个总体框架。 它指出, 代理商将试图最大限度地减少其根据观察、 内部状态和政策的信念定义的变异自由能量。 传统上, 一个独立主动推论模型的每个方面都必须由手写具体, 即人工定义隐藏的空间结构, 以及所需的分布, 如可能性和过渡概率。 最近, 努力从使用深神经网络的观测中自动了解国家空间表示方式。 但是, 这些模型通常过于分化, 并有可能过度配置手头的数据。 在本文中, 我们提出一种新的方法, 利用量子物理激发的强力网络学习状态空间。 强力网络能够代表量子状态的概率性, 以及减少大型状态空间, 使强力网络成为主动推断的自然对象。 我们展示了如何将强力网络用作序列数据的基因化模型。 此外, 我们展示了如何从这种基因化模型中获得信念, 以及一个积极的推导剂如何使用这些模型来测量我们所期望的能源。