Sum-rank-metric codes have wide applications in such as universal error correction and security in multishot network, space-time coding and construction of partial-MDS codes for repair in distributed storage. Fundamental properties of sum-rank-metric codes have been studied and some explicit or probabilistic constructions of good sum-rank-metric codes have been proposed. In this paper we propose two simple constructions of explicit linear sum-rank-metric codes. In finite length regime, numerous good linear sum-rank-metric codes from our construction are given. Some of them have better parameters than previous constructed sum-rank-metric codes. For example a lot of small block size better linear sum-rank-metric codes over ${\bf F}_q$ of the matrix size $2 \times 2$ are constructed for $q=2, 3, 4$. Asymptotically our constructed sum-rank-metric codes are closing to or exceeding the Gilbert-Varshamov-like bound for the sum-rank-metric codes for some parameters.
翻译:超正数代码在诸如通用误差校正和多发网络安全、空间时间编码和为分布式储存的修理建造部分MDS代码等方面有着广泛的应用,研究了超正数代码的基本特性,并提出了一些明确或概率的好正数代码结构。在本文中,我们提议了两种简单的直线和正数代码结构。在有限的长度制度中,提供了我们建筑中的许多良好的线性正数代码,其中一些有比以前建造的超正数代码更好的参数。例如,许多小块大小的比基底大小2美元=2美元、3美元和4美元更好的线性平价代码,为一些参数的基底尺寸2美元建造了2美元或2美元。我们建造的超正数代码正在接近或超过Gilbert-Varshamov类似的标准代码。