Until recently, most experts would probably have agreed we cannot backwards-step in constant time with a run-length compressed Burrows-Wheeler Transform (RLBWT), since doing so relies on rank queries on sparse bitvectors and those inherit lower bounds from predecessor queries. At ICALP '21, however, Nishimoto and Tabei described a new, simple and constant-time implementation. For a permutation $\pi$, it stores an $O (r)$-space table -- where $r$ is the number of positions $i$ where either $i = 0$ or $\pi (i + 1) \neq \pi (i) + 1$ -- that enables the computation of successive values of $\pi(i)$ by table look-ups and linear scans. Nishimoto and Tabei showed how to increase the number of rows in the table to bound the length of the linear scans such that the query time for computing $\pi(i)$ is constant while maintaining $O (r)$-space. In this paper we refine Nishimoto and Tabei's approach, including a time-space tradeoff, and experimentally evaluate different implementations demonstrating the practicality of part of their result. We show that even without adding rows to the table, in practice we almost always scan only a few entries during queries. We propose a decomposition scheme of the permutation $\pi$ corresponding to the LF-mapping that allows an improved compression of the data structure, while limiting the query time. We tested our implementation on real-world genomic datasets and found that without compression of the table, backward-stepping is drastically faster than with sparse bitvector implementations but, unfortunately, also uses drastically more space. After compression, backward-stepping is competitive both in time and space with the best existing implementations.


翻译:直到最近,大多数专家可能都同意我们无法在固定的时间里与一个连续的压缩 Burrows-Wheeler 变换(RLBWT) 相向不断退步,因为这样做依赖于对稀疏的比特方的排名查询,而那些从先前的查询中继承较低界限的人。然而,在 CICOMP 21 中,西本和太北描述了一个新的、简单和固定的时间执行。对于一个调整 $( r) 美元的空间表, 它存储了一个O (r) 美元( r)- 空间表 -- 美元是美元= 0 或 $\ pi( + 1) 或 $( + 1)\ neq\ pi (i) + 1美元), 因为它依赖于对稀疏松动的比分级查询, 从而能够通过表上检查和线性扫描来计算 $( $( r) i) 。 在本文中, 我们不断改进 的向下方的向下方的向下方的计算, 和向下方的向下方的计算, 我们的向下方的运行中显示一个执行过程的数据是一次。

0
下载
关闭预览

相关内容

第47届自动化、语言和编程国际学术讨论会(ICALP 2020)是欧洲理论计算机科学的主要会议和欧洲理论计算机科学协会(EATCS)年会,将于2020年7月8日至12日在中国北京举行。ICARP 2020将有两个传统的轨道A(算法、复杂度和游戏)和B(自动机、逻辑、语义和编程理论)。官网链接:https://econcs.pku.edu.cn/icalp2020/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月7日
Arxiv
0+阅读 · 2022年9月6日
Arxiv
0+阅读 · 2022年9月3日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员