We propose a regression model with matrix-variate skew-t response (REGMVST) for analyzing irregular longitudinal data with skewness, symmetry, or heavy tails. REGMVST models matrix-variate responses and predictors, with rows indexing longitudinal measurements per subject. It uses the matrix-variate skew-t (MVST) distribution to handle skewness and heavy tails, a damped exponential correlation (DEC) structure for row-wise dependencies across irregular time profiles, and leaves the column covariance unstructured. For estimation, we initially develop an ECME algorithm for parameter estimation and further mitigate its computational bottleneck via an asynchronous and distributed ECME (ADECME) extension. ADECME accelerates the E-step through parallelization, and retains the simplicity of the conditional M-step, enabling scalable inference. Simulations using synthetic data and a case study exploring matrix-variate periodontal disease endpoints derived from electronic health records demonstrate ADECME's superiority in efficiency and convergence, over the alternatives. We also provide theoretical support for our empirical observations and identify regularity assumptions for ADECME's optimal performance. An accompanying R package is available at https://github.com/rh8liuqy/STMATREG.


翻译:本文提出一种矩阵变元偏斜t响应回归模型(REGMVST),用于分析具有偏斜性、对称性或厚尾特征的不规则纵向数据。REGMVST同时建模矩阵变元响应变量与预测变量,其行索引对应每个受试体的纵向测量值。该模型采用矩阵变元偏斜t(MVST)分布处理偏斜性与厚尾特征,通过阻尼指数相关(DEC)结构刻画不规则时间剖面上行间的依赖关系,而列协方差则保持非结构化。在估计方法上,我们首先开发了用于参数估计的ECME算法,进而通过异步分布式ECME(ADECME)扩展缓解其计算瓶颈。ADECME通过并行化加速E步计算,同时保留条件M步的简洁性,从而实现可扩展的统计推断。基于合成数据的模拟研究,以及利用电子健康记录提取的矩阵变元牙周病终点指标的案例研究均表明,ADECME在计算效率与收敛性方面优于现有方法。我们为实证结果提供了理论支撑,并明确了ADECME达到最优性能的正则性假设。相关R软件包已在https://github.com/rh8liuqy/STMATREG发布。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员