Scientists and statisticians often want to learn about the complex relationships that connect two variables that vary over time. Recent work on sparse functional historical linear models confirms that they are promising for this purpose, but several notable limitations exist. Most importantly, previous works have imposed sparsity on the coefficient function, but have not allowed the sparsity, hence lag, to vary with time. We simplify the framework of sparse functional historical linear models by using a rectangular coefficient structure along with Whittaker smoothing, then relax the previous frameworks by estimating the dynamic time lag from a hierarchical coefficient structure. We motivate our study by aiming to extract the physical rainfall-runoff processes hidden within hydrological data. We show the promise and accuracy of our method using four simulation studies, justified by two real sets of hydrological data.
翻译:科学家和统计人员往往想了解将两个随时间而变化的变量联系在一起的复杂关系。最近关于少数功能性历史线性模型的工作证实,它们在这方面很有希望,但还存在一些显著的局限性。最重要的是,以前的工作对系数函数施加了宽度,但不允许随时间而变化。我们通过使用矩形系数结构和惠特克平滑,简化了分散功能性历史线性模型的框架,然后通过估计等级系数结构的动态时滞来放松以前的框架。我们通过利用水文数据中隐藏的实际降雨流过程来激励我们的研究。我们用两种实际水文数据来证明我们方法的希望和准确性。我们用四种模拟研究来显示我们方法的希望和准确性。</s>