The problem of skewness is common among clinical trials and survival data which has being the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Rayleigh Lomax distribution is constructed from Rayleigh Lomax distribution to capture the excessiveness of some survival data. We derive the new distribution by using beta logit function proposed by Jones (2004). Some statistical properties of the distribution such as probability density function, cumulative density function, reliability rate, hazard rate, reverse hazard rate, moment generating functions, likelihood functions, skewness, kurtosis and coefficient of variation are obtained. We also performed the expected estimation of model parameters by maximum likelihood; goodness of fit and model selection criteria including Anderson Darling (AD), CramerVon Misses (CVM), Kolmogorov Smirnov (KS), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Consistent Akaike Information Criterion (CAIC) are employed to select the better distribution from those models considered in the work. The results from the statistics criteria show that the proposed distribution performs better with better representation of the States in Nigeria COVID-19 death cases data than other competing models.


翻译:在临床试验和生存数据中,偏差问题很常见,这是不同灵活分布分布的研究重点和提议,因此,从Rayleigh Lomax分布处建造了称为扩展雷利Laylei Lomax分布的新分布,以捕捉某些生存数据的过度性。我们通过使用琼斯提议的Beta logit 函数来获取新的分布。(2004年),根据分布的一些统计特性,如概率密度函数、累积密度函数、可靠性率、危险率、逆向危险率、时速生成功能、概率函数、斜度、软性病和变异系数等,从工作中考虑的模型中选择更好的分布。我们还以最大可能的方式对模型参数进行了预期的估计;合适的和模型选择标准的良好性,包括Anderson Darling(Ad)、CramerVon Misses(CVM)、Kolmogorov Smirnov(KS)、Akaike Infricrialion(AIC)、Bayesian Infornation Criterriticlement(BIC),用于从工作中考虑的模型中选择更好的分布。根据统计标准,根据统计标准,拟议的分配结果显示,拟议的分配情况比尼日利亚其他死亡案例的代表性要好。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月6日
A Unified Approach to Coreset Learning
Arxiv
0+阅读 · 2021年11月4日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员