Recently Physically Informed Neural Networks have gained more and more popularity to solve partial differential equations, given the fact they escape the course of dimensionality. First Physically Informed Neural Networks are viewed as an underdetermined point matching collocation method then we expose the connection between Galerkin Least Square (GALS) and PINNs, to develop an a priori error estimate, in the context of elliptic problems. In particular techniques that belong to the realm of the least square finite elements and Rademacher complexity analysis will be used to obtain the above mentioned error estimate.
翻译:最近实际知情的神经网络在解决部分差异方程式方面越来越受欢迎,因为它们脱离了维度进程。 首先,实际知情的神经网络被视为一个与同地点匹配的不确定点,然后我们暴露了Galerkin最低广场(GALS)和PINNs之间的联系,以在椭圆问题的背景下进行先验的误差估计。 特别是,将使用属于最不平坦元素领域的技术和Rademacher复杂程度分析的技术来获得上述误差估计。