Network-facing applications are commonly exposed to all kinds of attacks, especially when connected to the internet. As a result, web servers like Nginx or client applications such as curl make every effort to secure and harden their code to rule out memory safety violations. One would expect this to include regular fuzz testing, as fuzzing has proven to be one of the most successful approaches to uncovering bugs in software. Yet, surprisingly little research has focused on fuzzing network applications. When studying the underlying reasons, we find that the interactive nature of communication, its statefulness, and the protection of exchanged messages render typical fuzzers ineffective. Attempts to replay recorded messages or modify them on the fly only work for specific targets and often lead to early termination of communication. In this paper, we discuss these challenges in detail, highlighting how the focus of existing work on protocol state space promises little relief. We propose a fundamentally different approach that relies on fault injection rather than modifying messages. Effectively, we force one of the communication peers into a weird state where its output no longer matches the expectations of the target peer, potentially uncovering bugs. Importantly, this weird peer can still properly encrypt/sign the protocol message, overcoming a fundamental challenge of current fuzzers. In effect, we leave the communication system intact but introduce small corruptions. Since we can turn either the server or the client into the weird peer, our approach is the first that can effectively test client-side network applications. Evaluating 16 targets, we show that Fuzztruction-Net outperforms other fuzzers in terms of coverage and bugs found. Overall, Fuzztruction-Net uncovered 23 new bugs in well-tested software, such as the web servers Nginx and Apache HTTPd and the OpenSSH client.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员