Temporal action detection aims to locate the boundaries of action in the video. The current method based on boundary matching enumerates and calculates all possible boundary matchings to generate proposals. However, these methods neglect the long-range context aggregation in boundary prediction. At the same time, due to the similar semantics of adjacent matchings, local semantic aggregation of densely-generated matchings cannot improve semantic richness and discrimination. In this paper, we propose the end-to-end proposal generation method named Dual Context Aggregation Network (DCAN) to aggregate context on two levels, namely, boundary level and proposal level, for generating high-quality action proposals, thereby improving the performance of temporal action detection. Specifically, we design the Multi-Path Temporal Context Aggregation (MTCA) to achieve smooth context aggregation on boundary level and precise evaluation of boundaries. For matching evaluation, Coarse-to-fine Matching (CFM) is designed to aggregate context on the proposal level and refine the matching map from coarse to fine. We conduct extensive experiments on ActivityNet v1.3 and THUMOS-14. DCAN obtains an average mAP of 35.39% on ActivityNet v1.3 and reaches mAP 54.14% at IoU@0.5 on THUMOS-14, which demonstrates DCAN can generate high-quality proposals and achieve state-of-the-art performance. We release the code at https://github.com/cg1177/DCAN.


翻译:在视频中,当前基于边界对接的罗列和计算所有可能的边界对接以产生建议的方法,但是这些方法忽略了边界预测中的长距离背景汇总;同时,由于相邻匹配的语义相似,对密集生成的匹配进行本地语义汇总无法改善语义丰富和差别;在本文件中,我们提议以边界对端提案生成方法命名双重环境聚合网络(DCAN),在两个级别,即边界水平和提议水平上汇总背景,以产生高质量的行动提案,从而改进时间行动探测的性能。具体地说,我们设计多语言时间环境聚合(MTCA),以实现边界水平的平稳背景汇总和准确的边界评估。为了匹配评估,COarse-tofine匹配(CMFM)旨在将建议级别集中起来,并将匹配图从comalal-og-glogation(DCAN-GAN1.3和THUOS-14级)进行广泛的实验。DCAN在35-MA-MA/MA+% 上取得平均的版本。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
ETP:精确时序动作定位
极市平台
13+阅读 · 2018年5月25日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Arxiv
0+阅读 · 2022年2月8日
Arxiv
7+阅读 · 2021年6月21日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关VIP内容
相关资讯
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
ETP:精确时序动作定位
极市平台
13+阅读 · 2018年5月25日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Top
微信扫码咨询专知VIP会员