Teaching a multi-fingered dexterous robot to grasp objects in the real world has been a challenging problem due to its high dimensional state and action space. We propose a robot-learning system that can take a small number of human demonstrations and learn to grasp unseen object poses given partially occluded observations. Our system leverages a small motion capture dataset and generates a large dataset with diverse and successful trajectories for a multi-fingered robot gripper. By adding domain randomization, we show that our dataset provides robust grasping trajectories that can be transferred to a policy learner. We train a dexterous grasping policy that takes the point clouds of the object as input and predicts continuous actions to grasp objects from different initial robot states. We evaluate the effectiveness of our system on a 22-DoF floating Allegro Hand in simulation and a 23-DoF Allegro robot hand with a KUKA arm in real world. The policy learned from our dataset can generalize well on unseen object poses in both simulation and the real world
翻译:在现实世界中,教授多指的多指点机器人在现实世界中捕捉物体是一个具有挑战性的问题。 我们提议了一个机器人学习系统, 它可以采取少量的人类演示和学习来捕捉不可见的物体。 我们的系统利用一个小型运动抓取数据集, 为多指的机器人抓抓器制作一个庞大的数据集, 并拥有多样化和成功的轨迹。 通过添加域随机化, 我们显示我们的数据集提供了强大的捕捉轨迹, 可以转移到政策学习者手中。 我们训练了一个将物体的点云作为输入的极性捕捉政策, 并预测从不同的初始机器人状态中捕捉物体的持续行动。 我们用模拟来评估我们的系统在22 - DoF 浮动的Allegro手和23 - Dof Allegro机器人手上的有效性, 在现实世界中用KUKA手臂。 我们从数据集中学习的政策可以在模拟和现实世界中将看不见物体的外观进行概括。