A simple gripper can solve more complex manipulation tasks if it can utilize the external environment such as pushing the object against the table or a vertical wall, known as "Extrinsic Dexterity." Previous work in extrinsic dexterity usually has careful assumptions about contacts which impose restrictions on robot design, robot motions, and the variations of the physical parameters. In this work, we develop a system based on reinforcement learning (RL) to address these limitations. We study the task of "Occluded Grasping" which aims to grasp the object in configurations that are initially occluded; the robot needs to move the object into a configuration from which these grasps can be achieved. We present a system with model-free RL that successfully achieves this task using a simple gripper with extrinsic dexterity. The policy learns emergent behaviors of pushing the object against the wall to rotate and then grasp it without additional reward terms on extrinsic dexterity. We discuss important components of the system including the design of the RL problem, multi-grasp training and selection, and policy generalization with automatic curriculum. Most importantly, the policy trained in simulation is zero-shot transferred to a physical robot. It demonstrates dynamic and contact-rich motions with a simple gripper that generalizes across objects with various size, density, surface friction, and shape with a 78% success rate. Videos can be found at https://sites.google.com/view/grasp-ungraspable/.
翻译:简单的抓抓器可以解决更复杂的操作任务, 如果它能够利用外部环境, 比如将对象推到表格或垂直墙上, 称为“ ExtrinsicDextentity ” 。 Exprinsic dexterity 以前的工作通常会谨慎地假设对机器人设计、 机器人运动和物理参数的变异施加限制的接触。 在这项工作中, 我们开发了一个基于强化学习( RL) 的系统, 以解决这些限制。 我们研究“ 隐蔽的精度” 的任务, 目的是在最初隐蔽的配置中捕捉对象; 机器人需要将对象移到一个可以实现这些抓取的配置。 我们展示了一个没有模型的 RL 对象, 并且使用一个简单的 RLL, 使用一个简单的控制器来成功完成这个任务。 这项政策学会了将目标推向墙上旋转, 然后在不附加附加奖励条件的 Excrincial dexterity 。 我们讨论这个系统的重要组成部分, 包括 RLL 问题的设计、 多graspregrasp 选择, 选择, 以及政策一般的图像, 将一个简单的 RLLL, 和一个自动的图像化, 将它转换成一个普通的系统 。 。 和整个的磁度, 和整个的磁性平流, 演示的 演示 。