Univariate and multivariate normal probability distributions are widely used when modeling decisions under uncertainty. Computing the performance of such models requires integrating these distributions over specific domains, which can vary widely across models. Besides some special cases, there exist no general analytical expressions, standard numerical methods or software for these integrals. Here we present mathematical results and open-source software that provide (i) the probability in any domain of a normal in any dimensions with any parameters, (ii) the probability density, cumulative distribution, and inverse cumulative distribution of any function of a normal vector, (iii) the classification errors among any number of normal distributions, the Bayes-optimal discriminability index and relation to the operating characteristic, (iv) dimension reduction and visualizations for such problems, and (v) tests for how reliably these methods may be used on given data. We demonstrate these tools with vision research applications of detecting occluding objects in natural scenes, and detecting camouflage.
翻译:单变量和多元正态概率分布在建立不确定性决策模型中被广泛应用。在这些模型中计算性能需要将这些分布在特定域上进行积分,这些域可以在不同的模型中变化很大。除了一些特殊情况外,不存在一般的解析表达式、标准数值方法或软件来计算这些积分。在这里,我们提供了数学结果和开源软件,可以提供以下内容:(i)任意维度和参数下的正态分布在任何区域的概率,(ii)正态分布向量的任意函数的概率密度、累积分布和反函数累积分布,(iii)任意数量的正态分布的分类错误、贝叶斯最优区分度指数及其与操作特征的关系,(iv)这些问题的降维和可视化,以及(v)用于测试这些方法在给定数据上可靠度的测试。我们用视觉研究的应用实验说明这些工具可以检测自然场景中的遮挡物和伪装。