Target-oriented sentiment classification is a fine-grained task of natural language processing to analyze the sentiment polarity of the targets. To improve the performance of sentiment classification, many approaches proposed various attention mechanisms to capture the important context words of a target. However, previous approaches ignored the significant relatedness of a target's sentiment and its local context. This paper proposes a local context-aware network (LCA-Net), equipped with the local context embedding and local context prediction loss, to strengthen the model by emphasizing the sentiment information of the local context. The experimental results on three common datasets show that local context-aware network performs superior to existing approaches in extracting local context features. Besides, the local context-aware framework is easy to adapt to many models, with the potential to improve other target-level tasks.
翻译:面向目标的情绪分类是一项精细的自然语言处理任务,目的是分析目标的情绪两极分化情况。为了改进情绪分类的绩效,许多方法提出了各种关注机制,以捕捉目标的重要背景文字。然而,以往的做法忽视了目标情绪及其当地背景的重大关联性。本文件建议建立一个地方背景意识网络(LCA-Net),配备当地背景嵌入和当地背景预测损失,通过强调当地背景的情绪信息来加强模型。三个共同数据集的实验结果显示,地方背景意识网络在提取当地背景特征方面优于现有方法。此外,地方背景意识框架很容易适应许多模式,有可能改进其他目标层面的任务。