We consider the problem of constructing a cyclic listing of all bitstrings of length $2n+1$ with Hamming weights in the interval $[n+1-\ell,n+\ell]$, where $1\leq \ell\leq n+1$, by flipping a single bit in each step. This is a far-ranging generalization of the well-known middle two levels problem (the case $\ell=1$). We provide a solution for the case $\ell=2$, and we solve a relaxed version of the problem for general values of $\ell$, by constructing cycle factors for those instances. The proof of the first result uses the lexical matchings introduced by Kierstead and Trotter, which we generalize to arbitrary consecutive levels of the hypercube. The proof of the second result uses symmetric chain decompositions of the hypercube, a concept known from the theory of posets. We also present several new constructions of such decompositions based on lexical matchings. In particular, we construct four pairwise edge-disjoint symmetric chain decompositions of the $n$-dimensional hypercube for any $n\geq 12$.


翻译:我们考虑的问题是,通过在每步中翻一小点,用$[$+1--\ ell,n ⁇ ell]$($$$$+1美元,即$1leq\ell\leq\leq n+1美元,用每步翻转一小点,将每步的1\leq\ell\leq\leq n+1美元,所有长度为2n+1美元的位数位数列列列列列列列列,每步翻转一小步,这是众所周知的中两个层次问题(案件$ell=1美元=1美元)的广泛概括化。我们为案件提供了一个解决方案 $@ell=2$ 的解决方案,我们通过为这些案例建造周期系数,解决了一般值$\ell$(美元)一般值问题的宽松版本。第一个结果的证明使用了基尔斯特德和特罗特和特罗特引入的词匹配,我们将其概括为超立方连续的任意水平。第二个结果的证明使用了超立方的对称链分链分解链分解装置,这是从表面理论中的一种概念中知道的超立概念。我们还提出了几种新构造,我们还提出了若干新的分解结构比立新构造。我们为立了4个基基基基基基基-美元(美元)的多基基基基基-基基基基-正正基元正基贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝贝,我们,我们,我们,我们建造4的4个新新的4,我们,我们,我们为12121212的任何立的4,我们,我们为4个基的4个基,我们,我们,我们为

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
0+阅读 · 2021年12月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员