An equi-isoclinic tight fusion frame (EITFF) is a type of Grassmannian code, being a sequence of subspaces of a finite-dimensional Hilbert space of a given dimension with the property that the smallest spectral distance between any pair of them is as large as possible. EITFFs arise in compressed sensing, yielding dictionaries with minimal block coherence. Their existence remains poorly characterized. Most known EITFFs have parameters that match those of one that arose from an equiangular tight frame (ETF) in a rudimentary, direct-sum-based way. In this paper, we construct new infinite families of non-"tensor-sized" EITFFs in a way that generalizes the one previously known infinite family of them as well as the celebrated equivalence between harmonic ETFs and difference sets for finite abelian groups. In particular, we construct EITFFs consisting of $Q$ planes in $\mathbb{C}^Q$ for each prime power $Q\geq 4$, of $Q-1$ planes in $\mathbb{C}^Q$ for each odd prime power $Q$, and of $11$ three-dimensional subspaces in $\mathbb{R}^{11}$. The key idea is that every harmonic EITFF -- one that is the orbit of a single subspace under the action of a unitary representation of a finite abelian group -- arises from a smaller tight fusion frame with a nicely behaved "Fourier transform." Our particular constructions of harmonic EITFFs exploit the properties of Gauss sums over finite fields.


翻译:equi- occlin 紧凑融合框架( EITFF) 是格拉斯曼尼法典的一种类型, 是一种具有一定维度的有限维度Hilbert空间子空间的序列, 其属性是任何一对之间最小的光谱距离尽可能大。 极光FF 出现在压缩感中, 生成词典, 其存在特征仍然很差 。 大多数已知的极光FF 的参数与以简便、 直接和基于方式的角紧框架( ETF) 生成的参数相匹配 。 在本文中, 我们建造新的非“ 超度” 超度的子空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员