Permutation polynomials over finite fields are an interesting and constantly active research subject of study for many years. They have important applications in areas of mathematics and engineering. In recent years, permutation binomials and permutation trinomials attract people's interests due to their simple algebraic forms. By reversely using Tu's method for the characterization of permutation polynomials with exponents of Niho type, we construct a class of permutation trinomials with coefficients 1 in this paper. As applications, two conjectures of [19] and a conjecture of [13] are all special cases of our result. To our knowledge, the construction method of permutation polynomials by polar decomposition in this paper is new. Moreover, we prove that in new class of permutation trinomials, there exists a permutation polynomial which is EA-inequivalent to known permutation polynomials for all m greater than or equal to 2. Also we give the explicit compositional inverses of the new permutation trinomials for a special case.
翻译:固定字段的变异多义性多义性是许多年来研究的一个有趣且持续活跃的研究课题。 它们具有数学和工程领域的重要应用。 近些年来, 变异性二元和变异三元性会因其简单的代数形式而吸引人们的兴趣。 反之, 我们使用Tu 的方法用Niho 型的外号来描述变异性多义性, 我们用本文的系数 1 构建了一组变异性三元性。 由于应用, [19] 的两种猜想和 [13] 的猜想都是我们结果的特例。 据我们所知, 本文中以极分解方式的变异多义性构建方法是新的。 此外, 我们证明在新的变异性三角性类中, 存在一种变异性多义性多义性, 它相当于所有大于或等于 2. 的已知变异性多义性多义性多义性。 我们还给出了新特殊三角体的明显构成反义性。