Private set intersection (PSI) allows two mutually-untrusting parties to compute an intersection of their respective sets, without revealing any information to each other about items that are not in the intersection. This work introduces a variant of the problem called {\em distance-aware} PSI (DA-PSI) for computing intersection of items in defined metric spaces. The intersection contains pairs of items that are within a specified distance threshold of each other. This paper puts forward constructions for two such metric spaces: (i) Minkowski distance of order 1 over the set of integers (i.e., for integers $a$ and $b$, their distance is $|a-b|$); and (ii) Hamming distance over the set $\{0,1\}^\ell$. The communication volume scales logarithmically in the distance threshold, and linearly in the set size for the Minkowski DA-PSI protocol. On the other hand, the communication volume scales quadratically in the distance threshold for the Hamming DA-PSI protocol and is independent of the number of dimensions. Applying the Minkowski DA-PSI protocol to compare IP addresses contacting honeypots for private collaborative blacklisting both improves findings relative to PSI, doubling the number of IPs in the intersection, and reduces communication and computation by $10\times$ relative to a naive baseline. Applying the Hamming DA-PSI protocol to the task of Iris recognition reduces communication volume by $4\times$ over a generic 2PC baseline.
翻译:私密十字路口( PSI) 允许两个互不信任方计算各自各组物品的交叉点, 但没有向对方透露任何关于非交叉点物品的信息。 这项工作引入了一个问题变体, 名为 $0, 1 ⁇ ell$ 。 通信量在距离阈值上以逻辑标定, 在 Minkowski DA- PSI 协议中以线性标尺标定。 另一方面, 通信量比 Hamming DA- PSI 协议 的距离阈值1 的四倍级标值要远, 独立于 整数( 美元和 美元), 它们的距离是 $ $ +a- b $ ; 以及 (二) 问题代号为 $ 0. 1 ⁇ / ell$ ; 问题代号为 问题代号为 。 通信量为Minkowski 和 DAPSI 协议的相对时间比值比值比值, 将IMSA- 协议比值比值比值比值比值比值比值比值比值比值比值 IP- IPBSA- 协议比值比值比值比值比值比值比值比值比值比值比值比值比值 IP IP IM 4 协议 的 IM IM IM IM IM 协议的比值比值比值比值比值比值比值比值比值比值比值比值比值 IM IM IM IM 4 IM 协议的 IPB值比值比值比值比值比值