This paper proposes three-filters-to-normal (3F2N), an accurate and ultrafast surface normal estimator (SNE), which is designed for structured range sensor data, e.g., depth/disparity images. 3F2N SNE computes surface normals by simply performing three filtering operations (two image gradient filters in horizontal and vertical directions, respectively, and a mean/median filter) on an inverse depth image or a disparity image. Despite the simplicity of 3F2N SNE, no similar method already exists in the literature. To evaluate the performance of our proposed SNE, we created three large-scale synthetic datasets (easy, medium and hard) using 24 3D mesh models, each of which is used to generate 1800--2500 pairs of depth images (resolution: 480X640 pixels) and the corresponding ground-truth surface normal maps from different views. 3F2N SNE demonstrates the state-of-the-art performance, outperforming all other existing geometry-based SNEs, where the average angular errors with respect to the easy, medium and hard datasets are 1.66 degrees, 5.69 degrees and 15.31 degrees, respectively. Furthermore, our C++ and CUDA implementations achieve a processing speed of over 260 Hz and 21 kHz, respectively. Our datasets and source code are publicly available at sites.google.com/view/3f2n.
翻译:3F2N SNE 计算表层常态,只需在反深图像或差异图像上进行三次过滤作业(水平和垂直方向两个图像梯度过滤器,以及平均/中位过滤器)。 尽管3F2N SNE很简单,但文献中还没有类似的方法。为了评估我们提议的SNE的性能,我们用24 3D网位模型制作了三套大型合成数据集(容易、中、硬),使用24 3D网位模型,每个模型用来生成1800-2500套深度图像(分解:480X640像素)和不同观点的相应地面图层图。 3F2N SNE 展示了最新水平的性能,优于所有其他基于SNEE的性能。为了评估我们提议的SNE的性能,我们创建了三套大型合成数据集(容易、中、中、中、中、中、中、中、中、中、中、中、中、中、中、高。