** 简介:**
计算机科学作为一门学科开始于1960年代。重点放在支持这些领域的编程语言,编译器,操作系统和数学理论上。理论计算机科学课程涵盖了有限自动机,正则表达式,无上下文语言和可计算性。在1970年代,算法研究被添加为理论的重要组成部分。重点是使计算机变得有用。如今,正在发生根本性的变化,重点更多地放在大量应用程序上。发生此更改的原因很多。计算和通信的融合发挥了重要作用。在自然科学,商业和其他领域中观察,收集和存储数据的能力增强,要求改变我们对数据的理解以及如何在现代环境中处理数据。网络和社交网络作为日常生活的中心方面的出现给理论带来了机遇和挑战。 尽管计算机科学的传统领域仍然非常重要,但未来越来越多的研究者将使用计算机来理解和从应用程序中产生的大量数据中提取可用信息,而不仅仅是如何使计算机在明确定义的问题上有用。考虑到这一点,我们已经写了这本书,以涵盖我们期望在未来40年中有用的理论,就像对自动机理论,算法和相关主题的理解使学生在过去40年中获得了优势一样。主要变化之一是对概率,统计和数值方法的重视程度有所提高。 本书的早期草稿已用于本科和研究生课程。附录中提供了本科课程所需的背景材料。因此,附录存在作业问题。诸如信息处理,搜索和机器学习之类的不同领域中的现代数据通常被有利地表示为具有大量组件的向量。向量表示不仅是用于保存记录的许多字段的簿记设备。确实,向量的两个显着方面:几何(长度,点积,正交性等)和线性代数(独立性,秩,奇异值等)被证明是相关且有用的。
部分目录: