We propose a novel Deformed Implicit Field (DIF) representation for modeling 3D shapes of a category and generating dense correspondences among shapes. With DIF, a 3D shape is represented by a template implicit field shared across the category, together with a 3D deformation field and a correction field dedicated for each shape instance. Shape correspondences can be easily established using their deformation fields. Our neural network, dubbed DIF-Net, jointly learns a shape latent space and these fields for 3D objects belonging to a category without using any correspondence or part label. The learned DIF-Net can also provides reliable correspondence uncertainty measurement reflecting shape structure discrepancy. Experiments show that DIF-Net not only produces high-fidelity 3D shapes but also builds high-quality dense correspondences across different shapes. We also demonstrate several applications such as texture transfer and shape editing, where our method achieves compelling results that cannot be achieved by previous methods.


翻译:我们提出一个新的变形隐形域(DIF), 用于模拟某类的3D形状, 并在各形状之间生成密集的对应关系。 有了DIF, 3D形状代表的是一个跨类共享的隐含模板, 以及一个 3D 变形字段和一个专门针对每个形状示例的校正字段。 形状对应关系可以通过它们的变形字段很容易建立。 我们称为 DIF- Net 的神经网络在不使用任何对应关系或部分标签的情况下, 共同学习属于某类的3D 对象的形状潜在空间和这些域。 学习过的 DIF- Net 也可以提供反映形状结构差异的可靠的通信不确定性测量。 实验显示, DIF- Net 不仅产生高不洁的 3D 形状, 而且还在不同形状之间构建高品质的密集对应关系。 我们还展示了像文本传输和形状编辑等若干应用程序, 我们的方法在其中取得了以往方法无法实现的令人信服的结果。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
39+阅读 · 2020年9月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
Top
微信扫码咨询专知VIP会员