Visual localization is of great importance in robotics and computer vision. Recently, scene coordinate regression based methods have shown good performance in visual localization in small static scenes. However, it still estimates camera poses from many inferior scene coordinates. To address this problem, we propose a novel visual localization framework that establishes 2D-to-3D correspondences between the query image and the 3D map with a series of learnable scene-specific landmarks. In the landmark generation stage, the 3D surfaces of the target scene are over-segmented into mosaic patches whose centers are regarded as the scene-specific landmarks. To robustly and accurately recover the scene-specific landmarks, we propose the Voting with Segmentation Network (VS-Net) to segment the pixels into different landmark patches with a segmentation branch and estimate the landmark locations within each patch with a landmark location voting branch. Since the number of landmarks in a scene may reach up to 5000, training a segmentation network with such a large number of classes is both computation and memory costly for the commonly used cross-entropy loss. We propose a novel prototype-based triplet loss with hard negative mining, which is able to train semantic segmentation networks with a large number of labels efficiently. Our proposed VS-Net is extensively tested on multiple public benchmarks and can outperform state-of-the-art visual localization methods. Code and models are available at \href{https://github.com/zju3dv/VS-Net}{https://github.com/zju3dv/VS-Net}.


翻译:视觉本地化在机器人和计算机视觉中非常重要。 最近, 现场协调回归法在小型静态场景的视觉本地化中表现良好。 但是, 它仍然估计相机在很多次低劣的场景坐标中的位置。 为了解决这个问题, 我们提出一个新的视觉本地化框架, 在查询图像和3D地图之间建立 2D 到 3D 的对应, 包含一系列可学习的场景特定地标。 在里程碑生成阶段, 目标场景的3D 表面被过度分割成 masaic 补丁, 其中心被视为特定场景的地标。 为了强有力和准确地恢复特定场景的地标, 我们提议通过分界化网络( VS- Net) 将像素分割成不同的地标补丁。 由于一个场景的地标数可能达到5000, 因此, 目标场景的3D 表面的分界化网络 将大量跨场点/ 视频网络 进行计算和记忆成本 。 我们提议采用基于新版本的图像S- 3real- develop Streal- develop silation comlistration

1
下载
关闭预览

相关内容

MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
CVPR2020接收论文开源代码
专知
30+阅读 · 2020年2月29日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
8+阅读 · 2021年6月1日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
CVPR2020接收论文开源代码
专知
30+阅读 · 2020年2月29日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员