The s-Club problem asks, for a given undirected graph $G$, whether $G$ contains a vertex set $S$ of size at least $k$ such that $G[S]$, the subgraph of $G$ induced by $S$, has diameter at most $s$. We consider variants of $s$-Club where one additionally demands that each vertex of $G[S]$ is contained in at least $\ell$ triangles in $G[S]$, that each edge of $G[S]$ is contained in at least $\ell$~triangles in $G[S]$, or that $S$ contains a given set $W$ of seed vertices. We show that in general these variants are W[1]-hard when parameterized by the solution size $k$, making them significantly harder than the unconstrained $s$-Club problem. On the positive side, we obtain some FPT algorithms for the case when $\ell=1$ and for the case when $G[W]$, the graph induced by the set of seed vertices, is a clique.
翻译:S- Club 问题要求,对于某一非方向的图形$G$, 美元是否包含一个数额至少为美元(S)的顶端, 其大小至少为美元(S)美元, 其大小至少为$[S]美元, 或美元(S]美元由美元引出, 其直径最多为美元。 我们考虑美元- Club 的变方, 其中一个额外要求每个G[S] 美元的顶端至少包含在$[S] $(美元]的三角形中, 美元[S] 的每端均包含一个数额至少为美元/ 美元(S]美元) 的顶端, 美元(S) 的每端至少包含一个数额为美元(S) 美元(S) 的顶端, 或美元(S) 美元包含给定的种子顶端值(W美元) 。 我们从总体上看, 这些变方在按溶度(k美元) 的参数设定参数时是W[1] 硬度,, 使其大大比未受限制的美元- Club 问题要难得多。 在正方面, 当$=1美元的情况下, 我们为案件获得一些FPT- squest 和案件获得一些FPT ligs 。